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The EPR parameters (zero-field splitting D and g factors g, g ) of Co?t ions in CdS and CdSe
semiconductors are calculated from the high-order perturbation formulas based on the cluster ap-
proach for a 3d” ion in trigonal symmetry. These formulas include the contribution to the EPR pa-
rameters from both the spin-orbit coupling parameter of the 3d” ion and that of the ligand. From the
calculations, the local atom-position parameters u (which are different from the corresponding values
in the host crystals) for the Co?™ impurity centers in both semiconductors are estimated. The results

are discussed.
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1. Introduction

Transition medal impurities strongly influence the
optical, electric and magnetic properties of semicon-
ductor devices [1,2]. Therefore it is important to get
information about the local structure of these impurity
centers in semiconductors. As is known, the EPR pa-
rameters (zero-field splitting and g factors) of a para-
magnetic impurity in crystals are sensitive to its im-
mediate environment. Therefore one can obtain useful
information on the local or defect structures of tran-
sition metal impurity centers in semiconductors. The
zero-field splitting D and g factors gy, g, of Co?* in
CdS and CdSe crystals were reported [3, 4], however
the defect structures of these Co?* impurity centers
in both crystals have not been estimated by analyzing
these EPR parameters. Co?* ions in CdS and CdSe re-
place the Cd?* ions and occupy the trigonal symme-
try sites [3, 4]. The trigonal distortion of the tetrahedral
MX4 clusters in the wurtzite structure is sensitive to the
atom-position parameter u. Since the nature and size
of the Co?* impurity are unlike those of the replaced
Cd2* ion, the local trigonal distortion and hence the lo-
cal atom-position parameter ujo. may be different from
the corresponding values in the host or pure crystals. In
this paper, we study the local atom-position parameters

Uioc and hence the local structures for Co2* in CdS and
CdSe semiconductors by calculating their EPR para-
meters. The results are discussed.

2. Calculation

For 3d" ions in semiconductors, such as Co?* in
Cds, and CdSe, the conventional one spin-orbit (SO)
parameter model (where only the contribution of the
SO coupling parameter {4 of the central 3d" ion is in-
cluded) based on the classical crystal-field theory is not
suitable, because of the strong covalence of these semi-
conductors, and the admixture of the SO coupling pa-
rameters between the d electrons of the 3d" ion and
the p electrons of the ligands via the covalence ef-
fects should be considered [5, 6]. Therefore, a two-SO-
parameter model (where the contributions of both the
SO coupling parameter of 3d" ion and that of the lig-
and are included) based on the cluster approach must
be used here [6—8]. According to this model, the one-
electron basis functions of a 3d™ MX4 cluster can be
expressed as

¥ = Ni(|dt) + Ag|0t) + Ax| i),

1
¥e = Ne(|de) + V/32z|e)), "
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where the subscript e or t stands for the irreducible rep-
resentation of the T4 group. |de) and |d;) are the d or-
bitals of the 3d" ion. |r.), |m) and |ot) are the p or-
bitals of the ligands. Ny and N, are the normalization
coefficients, and A and A, are the orbital mixing co-
efficients.
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From these basis functions and Macfarlane’s
perturbation-loop method [9,10], the high-order
perturbation formulas of the EPR parameters D, g
and g, based on the cluster approach for the 3d” ion
in a trigonal MX4 cluster can be derived as

D =2¢"%(1/E2 — 1/E2)v/9 — V2V (' [2/(3E1Es) + 1/ (E2Es) + 1/ (3E3Es) + 1/ (E2E4) +f284/(E1E4E5)](2)

— V2VB4(? [4/(EsE4Es) + 9/(E3Es)].

g) = 0s+8K'{"/(3E1) — 28'(2K'E — k' +20s")/ (9EF) +4¢"? (k— 295) / (9EF) — 282 (K+9s) / (3E3)

+4KCC[1/(9E1Es) — 1/ (3E1E2) +1/(3E2Es)] —
91 =) +4K ¢/ (3E]) —4v2V (K¢ +2k¢") /(3E1Es),

where E1, Ey, E3, E4 and Es are the zero-order energy
separations between the ground state *Aj(t>%e*) and
the excited states T, (to%e3), 2Toa(t23e%), 2Top(t2*e%),
4Tia (%% and *Typ (t2%€%), respectively. gs (=
2.0023) is the free-ion value. By = N3NeBy [By (and
Cyp) are the Racah parameters of a free 3d” ion]. v and
V' are the trigonal field parameters. The SO coupling
parameters ¢, ¢’ and the orbital reduction factors k,
K are

§=(N)*{ &0+ [V2hrho — (Ar)?/2] 80},
= Ne-Ne{ & + [Pnho /V/2+ (Ar)? /2603,
k=(N)2[1— (A2)2/2 + V22Az Ao + 2A6Sup(0)
+2A:S4p(m)],
K =N Ne[1+ (Ar)?/2+ Arho / V2
+422S1p () + Ao Sip(0)],

where &7 and ¢ are, respectively, the SO coupling pa-

rameter of the 3d” ion and that of the ligands in free
state. Syp() = (di|m) = (de|me)/v/3 and Syp(0) =
(di|ot) are the group overlap integrals. From the Slater-
type SCF functions [11,12] and the average metal-
ligand distances in CdS and CdSe [13], we calculate
Sup(7) ~ 0.0054 and Syp (o) ~ —0.0226 for CdS: Co?*
and Syp(7) ~ 0.0053 and Sy (o) ~ —0.0230 for CdSe:
Co?t,

According to the one-electron basis functions, we
have the normalization relationships

(4)

Ny = [1+(Ag)2+(/ln)2+2)»aSup(G)+2M$ﬁp(ﬂ)]_%7

Ne = [1+3(Ao)? + 62 Sip(m)] 2. (5)

8K'('V/(9EF) +4v2V (KE + k(') / (eE1Eq), ©)

The parameters N; and N, can be obtained by analyzing
the optical spectra of the studied system. For 3d" ions
in 11-VI and I11-V semiconductors, the conventional B,
C and A crystal-field scheme is not suitable for the
analysis of d-d transition optical spectra because of the
strong covalence [5, 14, 15], and so a modified N¢, Ne
and Aes scheme [6—8] should be used here. Thus, ac-
cording to the optical spectra of CdS: Co?*t [16,17]
and CdSe: Co?* [17,18] and the Racah parameters
By ~ 1115 cm~1 and Cy ~ 4366 cm~! of free Co?"
ion [19], we obtain for CdS: Co?*

N ~ 0.884, Ne ~ 0.923, At ~ 3600 cm—L,  (6)
and for CdSe; Co?+
N ~ 0.886, Ne ~ 0.925, Aef ~ 3300cm~L.  (7)

Substituting the parameters Syp(7), Syp(0), Ny and Ne
into (5), we obtain for CdS: Co?*, A, ~ —0.246159,
Ao ~ 0.494021, and for CdSe: Co?", A, ~ —0.24252,
A =~ 0.490093. Thus, from the above parameters and
the free-ion values of { (Co*") ~ 533 cm ™ [19], {7
() ~ 365 cm* and £J(Se?”) ~ 1659 cm~* [20],
the SO coupling parameters and the orbital reduction
factors in (4) for Co?* in both crystals can be calcu-
lated easily.

The trigonal field parameters in the superposition
model [21]

v =23/7A(Ro) [2(Ro/Ry)"
+3(3cos? 6 — 1)(Ry/Rp)"]
+20/63A4(Ro) [8(Ro/Ru)"
+3(35c0s* 6 — 30c0s? 6 — 1)(Ro/Rp)%]
+20v/2/3A4(Rg)sin® 0 cos 6 (Ry /Ry,
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V = —V2/TRy(Ro) [2(Ro/Ry)®
+3(3c0s? 6 — 1)(Ry/Rp)"?]

+5v/2/63A4(Ro) [B(Ro/Ry)" ®)
+3(35c0s* 6 — 30c0s? 6 + 3)(Ro/Rp) %]
+10/3A4(Ry)sin® 6 cos 6 (Ro/Ra)¥,

where t, and t; are the power-law exponents. For
the 3d" ions in many crystals we take t, ~ 3 and
~ 5 [8,22,23]. Ay(Ry) and A4(Ry) are the in-
trinsic parameters with the reference distance Rg
R~ (Ry +3Ry)/4. For 3d" MX4 clusters, A4(Ry)
27Dgq/16 [8,21,23]. The ratio Ay(Ry)/A4(Ro) = 9 ~
12 [8,22-24] is obtained for 3d" ions in many crys-
tals. We take the average value A(Ry)/As(Ry) ~ 10.5
here. Ry is the bonding length along C3 axis, and 6
is the angle between the directions of R; and R,. The
structural parameters Ry, R, and 6 in wurtzite structure
can be calculated from the lattice constants a, c and the
atom-position parameter u (note: the trigonal distortion
of the MX4 cluster is sensitive to the parameter u). For
CdS [3], a~ 4.137 A, c~67144A u~0.378, and
for CdSe [13], a~ 4.30 A, c~7.0133 A, u~0.377.
Applying the structure data of the host crystals to the
above formulas, the EPR parameters of CdS: Co%*
and CdSe: Co?* have been calculated. The calculated
zero-field splittings D agree poorly in sign and magni-
tude with the observed values (see Table 1), suggest-
ing that the local structural parameters in the vicin-
ity of the Co?* ions in CdS and CdSe are unlike the
corresponding structural parameters in the pure host
crystals. Since the zero-field splitting D is very sensi-
tive to the trigonal distortion of impurity centers and
hence to the local atom-position parameter ujc, We
mainly study the change of the atom-position param-
eter u caused by the impurity (i.e., the local parameter
Uoc) for Co2* in both crystals. By fitting the calculated
EPR parameters (in particular, the zero-fields splitting
D) to the observed values, we obtain for CdS: Co?+

&

Ujoc = 0.3747, C))
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and for CdSe: Co?*

Ujoc =2 0.3741. (10)
The comparisons between the calculated and experi-
mental EPR parameters are shown in Table 1.

Table 1. EPR parameters (zero-field splitting and g factors)
for Co?* in CdS and CdSe semiconductors.
Cds: Co™™ CdSe: Co**

Cal2 cCalP Expt.[3] Cal? CalP Expt. [4]
D (cm~ 1) —1.2255 0.6637 0.66(2) —0.7981 0.4827 0.475(10)
g 22691 2.2580 2269 2.2655 2.2552 2.295(10)
gL 22593 2.2648 2286 2.2558 2.2612 2.294(20)
@ calculated by using the atom-position parameter u in the pure crys-
tal.  calculated by using the local atom-position parameter yc in
the impurity center.

3. Discussion

From Table 1 it can be seen that by applying suit-
able local atom-position parameters ujo, the calcu-
lated EPR parameters for CdS: Co%* and CdSe: Co?*
are consistent with the observed values. The local pa-
rameter Ujqoc, differing from the host parameter u, sug-
gests that the impurity ions Co?* in CdS and CdSe do
not occupy the exact CdZJr sites, but are displaced by
AR = (U—Ujoc) €~ 0.022 A along the C3 axis for CdS:
Co2*, and AR~ 0.020 A for CdSe: Co2*. Similar dis-
placements of 3d" impurities in wurtzite-type semicon-
ductors have also been found for Ti%* and V3 in CdS
[8] and Fe3+, Mn2* and Ni®* in GaN [23]. So, the lo-
cal atom-position parameters ujo, and hence the dis-
placements of Co?* in CdS: Co®>* and CdSe: Co**
crystals can be regarded as reasonable. Evidently the
local structure of 3d" impurity centers in crystals can
be estimated by studying their EPR parameters.
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