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The EPR parameters (zero-field splitting D and g factors g‖, g⊥) of Co2+ ions in CdS and CdSe
semiconductors are calculated from the high-order perturbation formulas based on the cluster ap-
proach for a 3d7 ion in trigonal symmetry. These formulas include the contribution to the EPR pa-
rameters from both the spin-orbit coupling parameter of the 3d7 ion and that of the ligand. From the
calculations, the local atom-position parameters u (which are different from the corresponding values
in the host crystals) for the Co2+ impurity centers in both semiconductors are estimated. The results
are discussed.
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1. Introduction

Transition medal impurities strongly influence the
optical, electric and magnetic properties of semicon-
ductor devices [1, 2]. Therefore it is important to get
information about the local structure of these impurity
centers in semiconductors. As is known, the EPR pa-
rameters (zero-field splitting and g factors) of a para-
magnetic impurity in crystals are sensitive to its im-
mediate environment. Therefore one can obtain useful
information on the local or defect structures of tran-
sition metal impurity centers in semiconductors. The
zero-field splitting D and g factors g‖, g⊥ of Co2+ in
CdS and CdSe crystals were reported [3, 4], however
the defect structures of these Co2+ impurity centers
in both crystals have not been estimated by analyzing
these EPR parameters. Co2+ ions in CdS and CdSe re-
place the Cd2+ ions and occupy the trigonal symme-
try sites [3, 4]. The trigonal distortion of the tetrahedral
MX4 clusters in the wurtzite structure is sensitive to the
atom-position parameter u. Since the nature and size
of the Co2+ impurity are unlike those of the replaced
Cd2+ ion, the local trigonal distortion and hence the lo-
cal atom-position parameter u loc may be different from
the corresponding values in the host or pure crystals. In
this paper, we study the local atom-position parameters
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uloc and hence the local structures for Co2+ in CdS and
CdSe semiconductors by calculating their EPR para-
meters. The results are discussed.

2. Calculation

For 3dn ions in semiconductors, such as Co2+ in
CdS, and CdSe, the conventional one spin-orbit (SO)
parameter model (where only the contribution of the
SO coupling parameter ζd of the central 3dn ion is in-
cluded) based on the classical crystal-field theory is not
suitable, because of the strong covalence of these semi-
conductors, and the admixture of the SO coupling pa-
rameters between the d electrons of the 3dn ion and
the p electrons of the ligands via the covalence ef-
fects should be considered [5, 6]. Therefore, a two-SO-
parameter model (where the contributions of both the
SO coupling parameter of 3dn ion and that of the lig-
and are included) based on the cluster approach must
be used here [6 – 8]. According to this model, the one-
electron basis functions of a 3dn MX4 cluster can be
expressed as

Ψt = Nt(|dt〉+ λσ |σt〉+ λπ |πt〉),
Ψe = Ne(|de〉+

√
3λπ |πe〉),

(1)
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where the subscript e or t stands for the irreducible rep-
resentation of the Td group. |de〉 and |dt〉 are the d or-
bitals of the 3dn ion. |πe〉, |πt〉 and |σt〉 are the p or-
bitals of the ligands. Nt and Ne are the normalization
coefficients, and λσ and λπ are the orbital mixing co-
efficients.

From these basis functions and Macfarlane’s
perturbation-loop method [9, 10], the high-order
perturbation formulas of the EPR parameters D, g‖
and g⊥, based on the cluster approach for the 3d7 ion
in a trigonal MX4 cluster can be derived as

D = 2ζ ′2(1/E2
1 −1/E2

2)v/9−
√

2v′ζζ ′[2/(3E1E4)+ 1/(E2E3)+ 1/(3E3E4)+ 1/(E2E4)+
√

2B4/(E1E4E5)
]

−
√

2v′B4ζ ′2[4/(E3E4E5)+ 9/(E2
2E3)

]
,

(2)

g‖ = gs + 8k′ζ ′/(3E1)−2ζ ′(2k′ζ − kζ ′ + 2gsζ ′)/(9E2
1)+ 4ζ ′2(k−2gs)/(9E2

3)−2ζ 2(k + gs)/(3E2
2)

+ 4k′ζζ
[
1/(9E1E3)−1/(3E1E2)+ 1/(3E2E3)

]−8k′ζ ′v/(9E2
1)+ 4

√
2v′(k′ζ + kζ ′)/(eE1E4),

g⊥ = g‖+ 4k′ζ ′v/(3E2
1)−4

√
2v′(k′ζ + 2kζ ′)/(3E1E4),

(3)

where E1, E2, E3, E4 and E5 are the zero-order energy
separations between the ground state 4A2(t23e4) and
the excited states 4T2 (t24e3), 2T2a(t23e4), 2T2b(t24e3),
4T1a (t23e4) and 4T1b (t24e3), respectively. gs (≈
2.0023) is the free-ion value. B4 = N3

t NeB0 [B0 (and
C0) are the Racah parameters of a free 3d7 ion]. v and
v′ are the trigonal field parameters. The SO coupling
parameters ζ , ζ ′ and the orbital reduction factors k,
k′ are

ζ = (Nt)2
{

ζ 0
d +

[√
2λπ λσ − (λπ)2/2

]
ζ 0

p

}
,

ζ ′ = Nt ·Ne{ζ 0
d +[λπλσ/

√
2+(λπ)2/2]ζ 0

p },
k = (Nt)2[1− (λπ)2/2+

√
2λπλσ + 2λσSdp(σ)

+ 2λπSdp(π)],

k′ = Nt ·Ne
[
1+(λπ)2/2+ λπλσ /

√
2

+ 4λπSdp(π)+ λσSdp(σ)
]
,

(4)

where ζ 0
d and ζ 0

p are, respectively, the SO coupling pa-
rameter of the 3d7 ion and that of the ligands in free
state. Sdp(π) = 〈dt|πt〉 = 〈de|πe〉/

√
3 and Sdp(σ) =

〈dt|σt〉 are the group overlap integrals. From the Slater-
type SCF functions [11, 12] and the average metal-
ligand distances in CdS and CdSe [13], we calculate
Sdp(π)≈ 0.0054 and Sdp(σ)≈−0.0226 for CdS: Co2+

and Sdp(π)≈ 0.0053 and Sdp(σ)≈−0.0230 for CdSe:
Co2+.

According to the one-electron basis functions, we
have the normalization relationships

Nt =
[
1+(λσ)2 +(λπ)2 +2λσ Sdp(σ)+2λπSdp(π)

]− 1
2 ,

Ne =
[
1+ 3(λσ)2 + 6λπSdp(π)

]− 1
2 . (5)

The parameters Nt and Ne can be obtained by analyzing
the optical spectra of the studied system. For 3dn ions
in II-VI and III-V semiconductors, the conventional B,
C and ∆ crystal-field scheme is not suitable for the
analysis of d-d transition optical spectra because of the
strong covalence [5, 14, 15], and so a modified N t, Ne
and ∆eff scheme [6 – 8] should be used here. Thus, ac-
cording to the optical spectra of CdS: Co2+ [16, 17]
and CdSe: Co2+ [17, 18] and the Racah parameters
B0 ≈ 1115 cm−1 and C0 ≈ 4366 cm−1 of free Co2+

ion [19], we obtain for CdS: Co2+

Nt ≈ 0.884, Ne ≈ 0.923, ∆eff ≈ 3600 cm−1, (6)

and for CdSe: Co2+

Nt ≈ 0.886, Ne ≈ 0.925, ∆eff ≈ 3300 cm−1. (7)

Substituting the parameters Sdp(π), Sdp(σ), Nt and Ne

into (5), we obtain for CdS: Co2+, λπ ≈ −0.246159,
λσ ≈ 0.494021, and for CdSe: Co2+, λπ ≈ −0.24252,
λσ ≈ 0.490093. Thus, from the above parameters and
the free-ion values of ζ 0

d (Co2+) ≈ 533 cm−1 [19], ζ 0
p

(S2−) ≈ 365 cm−1 and ζ 0
p (Se2−) ≈ 1659 cm−1 [20],

the SO coupling parameters and the orbital reduction
factors in (4) for Co2+ in both crystals can be calcu-
lated easily.

The trigonal field parameters in the superposition
model [21]

v = 3/7Ā2(R0)
[
2(R0/R1)t2

+ 3(3cos2 θ −1)(R0/R2)t2
]

+ 20/63Ā4(R0)
[
8(R0/R1)t4

+ 3(35cos4 θ −30cos2 θ −1)(R0/R2)t4
]

+ 20
√

2/3Ā4(R0)sin3 θ cosθ (R0/R2)t4 ,
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v′ = −
√

2/7Ā2(R0)
[
2(R0/R1)t2

+ 3(3cos2 θ −1)(R0/R2)t2
]

+ 5
√

2/63Ā4(R0)
[
8(R0/R1)t4

+ 3(35cos4 θ −30cos2 θ + 3)(R0/R2)t4
]

+ 10/3Ā4(R0)sin3 θ cosθ (R0/R2)t4 ,

(8)

where t2 and t4 are the power-law exponents. For
the 3dn ions in many crystals we take t2 ≈ 3 and
t4 ≈ 5 [8, 22, 23]. Ā2(R0) and Ā4(R0) are the in-
trinsic parameters with the reference distance R0 ≈
R̄ ≈ (R1 + 3R2)/4. For 3dn MX4 clusters, Ā4(R0) =
27Dq/16 [8, 21, 23]. The ratio Ā2(R0)/Ā4(R0) ≈ 9 ∼
12 [8, 22 – 24] is obtained for 3dn ions in many crys-
tals. We take the average value Ā2(R0)/Ā4(R0) ≈ 10.5
here. R1 is the bonding length along C3 axis, and θ
is the angle between the directions of R1 and R2. The
structural parameters R1, R2 and θ in wurtzite structure
can be calculated from the lattice constants a, c and the
atom-position parameter u (note: the trigonal distortion
of the MX4 cluster is sensitive to the parameter u). For
CdS [3], a ≈ 4.137 Å, c ≈ 6.7144 Å, u ≈ 0.378, and
for CdSe [13], a ≈ 4.30 Å, c ≈ 7.0133 Å, u ≈ 0.377.
Applying the structure data of the host crystals to the
above formulas, the EPR parameters of CdS: Co2+

and CdSe: Co2+ have been calculated. The calculated
zero-field splittings D agree poorly in sign and magni-
tude with the observed values (see Table 1), suggest-
ing that the local structural parameters in the vicin-
ity of the Co2+ ions in CdS and CdSe are unlike the
corresponding structural parameters in the pure host
crystals. Since the zero-field splitting D is very sensi-
tive to the trigonal distortion of impurity centers and
hence to the local atom-position parameter u loc, we
mainly study the change of the atom-position param-
eter u caused by the impurity (i.e., the local parameter
uloc) for Co2+ in both crystals. By fitting the calculated
EPR parameters (in particular, the zero-fields splitting
D) to the observed values, we obtain for CdS: Co2+

uloc ≈ 0.3747, (9)

and for CdSe: Co2+

uloc ≈ 0.3741. (10)

The comparisons between the calculated and experi-
mental EPR parameters are shown in Table 1.

Table 1. EPR parameters (zero-field splitting and g factors)
for Co2+ in CdS and CdSe semiconductors.

CdS: Co2+ CdSe: Co2+

Cal.a Cal.b Expt. [3] Cal.a Cal.b Expt. [4]
D (cm−1) −1.2255 0.6637 0.66(2) −0.7981 0.4827 0.475(10)
g‖ 2.2691 2.2580 2.269 2.2655 2.2552 2.295(10)
g⊥ 2.2593 2.2648 2.286 2.2558 2.2612 2.294(20)

a calculated by using the atom-position parameter u in the pure crys-
tal. b calculated by using the local atom-position parameter uloc in
the impurity center.

3. Discussion

From Table 1 it can be seen that by applying suit-
able local atom-position parameters u loc, the calcu-
lated EPR parameters for CdS: Co2+ and CdSe: Co2+

are consistent with the observed values. The local pa-
rameter uloc, differing from the host parameter u, sug-
gests that the impurity ions Co2+ in CdS and CdSe do
not occupy the exact Cd2+ sites, but are displaced by
∆R = (u−uloc) c≈ 0.022 Å along the C3 axis for CdS:
Co2+, and ∆R ≈ 0.020 Å for CdSe: Co2+. Similar dis-
placements of 3dn impurities in wurtzite-type semicon-
ductors have also been found for Ti2+ and V3+ in CdS
[8] and Fe3+, Mn2+ and Ni3+ in GaN [23]. So, the lo-
cal atom-position parameters u loc, and hence the dis-
placements of Co2+ in CdS: Co2+ and CdSe: Co2+

crystals can be regarded as reasonable. Evidently the
local structure of 3dn impurity centers in crystals can
be estimated by studying their EPR parameters.
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